Long-term changes in the benthic community of Lake Michigan

Ashley K. Elgin, PhD NOAA Great Lake Environmental Research Laboratory Benthic Ecologist ashley.elgin@noaa.gov

Thank you to my collaborators:

NOAA: Nalepa, Glyshaw, Pothoven, Elliot, Constant, Beadle, Yagiela, Braymer, Burlingame, Roetman, Workman

CIGLR: Wensman, Orzechowski, Carter, Dunnuck, Mabrey

Buffalo State College: Karatayev, Burlakova, Mehler

USGS: Esselman, Bunnell

EPA GLNPO: Hinchey-Malloy, Nettesheim, Scofield, R/V Lake Guardian Captain and Crew

Overview

- Benthic invertebrates
- NOAA long-term benthic monitoring program
- Expansion of invasive mussels
- Benthic community response

Benthic Invertebrates

- Bottom-dwelling organisms
- Aquatic larval stages of insects
- Nutrient cycling
- Food source

NOAA Long-term Benthic Monitoring Program

Mission:

To track invasive dreissenid mussel and other benthos populations in Lake Michigan (and beyond)

Approach:

- Annual surveys in S. Lake Michigan
- Whole-lake surveys in Lake
 Michigan on a 5-year cycle, starting
 in 1994/5

NOAA Annual S. Lake Michigan Benthic Survey

- Established in 1980
 using some historic sites
 from the 1930's and
 1960's
- Conducted annually since the 1990's
- Original goal: impacts of nutrient reductions
- Revised goal: impacts of invasive dreissenid mussels

Quagga Mussels (Dreissena rostriformis bugensis)

Zebra Mussels (Dreissena polymorpha)

Zebra vs. Quagga

- Quaggas dominate in the Great Lakes
- Zebra mussels rarely found in offshore sites (>15m)
- Zebra mussels are more common in the nearshore, inland lakes, and on infrastructure
- Coexistence occurs in shallow, productive areas:
 - Saginaw Bay
 - Green Bay
 - Western Lake Erie

Dreissenid Mussel Impacts

- Foul infrastructure
- Displace native mussels
- Reduce spring diatom bloom
- Increase water clarity and nuisance algae
- Shift energy from the water column to lake bed

Density (No. m-2)

Great Lakes Comparison- Lake-wide Density

Data from:

Watkins et al. 2007; Birkett et al. 2015; Karatayev et al. 2020, 2021;

Nalepa et al. 2014, 2018, 2020

Changes in the Benthic Community Over Time

Diporeia continue to decline and are only found deep

Diporeia/Dreissenid mussel connections

- Reasons for rapid declines of Diporeia are unclear
- Are mussels out-completing Diporeia for food?
- Is the decline in *Diporeia* related to disease or parasites?

Conclusions

- Dreissenid mussels are ecosystem engineers that alter substrate, light and food supply
- Diporeia declines have altered the food web
- Oligochaetes have fared well

Questions?

ashley.elgin@noaa.gov

Mussel Veligers

- Free-floating larval life stage of mussels
- Veligers can dominate the zooplankton community
- Less is known about their contribution to the food web

